

MATRIZ DE PROVA DE AVALIAÇÃO EM REGIME NÃO PRESENCIAL
Ano Letivo 2023/2024

ENSINO SECUNDÁRIO RECORRENTE POR MÓDULOS

Disciplina: Física e Química A

Módulos 1,2 e 3

Modalidade: Prova escrita

Duração da prova: 135 minutos

Domínio/Subdomínio	Conteúdos	Metas Curriculares	Estrutura da Prova/ itens de avaliação	Cotações (Total 200 pontos)
ELEMENTOS	Ordens de grandeza e escalas de	• Descrever a constituição de átomos com base no número atómico,		
QUÍMICOS E SUA	comprimento	no número de massa e na definição de isótopos.	Itens de selecção	80-100
ORGANIZAÇÃO	 Dimensões à escala atómica 	Determinar a ordem de grandeza de um número relacionando	- Escolha múltipla	
	 Massa isotópica e massa atómica 	tamanhos de diferentes estruturas na Natureza (por exemplo,	,	
1.1 Massa e tamanho	relativa média	célula, ser humano, Terra e Sol) numa escala de comprimentos.		
dos átomos	 Quantidade de matéria e massa 	• Comparar ordens de grandeza de distâncias e tamanhos à escala	Itens de construção	100-120
	molar	atómica a partir, por exemplo, de imagens de microscopia de alta	- Resposta curta	
	 Fração molar e fração mássica 	resolução, justificando o uso de unidades adequadas.	-	
		 Associar a nanotecnologia à manipulação da matéria à escala 	- Resposta restrita	
		atómica e molecular e identificar algumas das suas aplicações com		
		base em informação selecionada.		
		 Indicar que o valor de referência usado como padrão para a massa 		
		relativa dos átomos e das moléculas é 1/12 da massa do átomo de		
		carbono-12.		
		 Interpretar o significado de massa atómica relativa média e calcular 		
		o seu valor a partir de massas isotópicas, justificando a proximidade		
		do seu valor com a massa do isótopo mais abundante.		
		 Identificar a quantidade de matéria como uma das grandezas do 		
		Sistema Internacional (SI) de unidades e caracterizar a sua unidade,		
		mole, com referência ao número de Avogadro de entidades.		

			•	Relacionar o número de entidades numa dada amostra com a quantidade de matéria nela presente, identificando a constante de Avogadro como constante de proporcionalidade. Calcular massas molares a partir de tabelas de massas atómicas relativas (médias). Relacionar a massa de uma amostra e a quantidade de matéria com a massa molar. Determinar composições quantitativas em fração molar e em fração mássica, e relacionar estas duas grandezas.
1.2 Energia dos eletrões	•	Espetros contínuos e descontínuos	•	Indicar que a luz (radiação eletromagnética ou onda
nos átomos	•	O modelo atómico de Bohr		eletromagnética) pode ser detetada como partículas de energia
		Transições eletrónicas Quantização de energia		(fotões), sendo a energia de cada fotão proporcional à frequência dessa luz.
		Espetro do átomo de hidrogénio		Identificar luz visível e não visível de diferentes frequências no
	•	Energia de remoção electrónica		espetro eletromagnético, comparando as energias dos respetivos
	•	Modelo quântico do átomo		fotões.
		níveis e subníveis	•	Distinguir tipos de espetros: descontínuos e contínuos; de absorção
		- orbitais (s, p e d)		e de emissão.
		- spin	•	Interpretar o espetro de emissão do átomo de hidrogénio através
	•	Configuração eletrónica de átomos		da quantização da energia do eletrão, concluindo que esse espetro
		 Princípio da Construção 		resulta de transições eletrónicas entre níveis energéticos.
		(ou de Aufbau)	•	Identificar a existência de níveis de energia bem definidos, e a
		- Princípio da Exclusão de		ocorrência de transições de eletrões entre níveis por absorção ou
		Pauli Pagra de Uund		emissão de energias bem definidas, como as duas ideias
		- Regra de Hund		fundamentais do modelo atómico de Bohr que prevalecem no modelo atómico atual.
			•	Associar a existência de níveis de energia à quantização da energia
				do eletrão no átomo de hidrogénio e concluir que esta quantização
				se verifica para todos os átomos.
			•	Associar cada série espetral do átomo de hidrogénio a transições
				eletrónicas com emissão de radiação nas zonas do ultravioleta,
				visível e infravermelho.

- Relacionar, no caso do átomo de hidrogénio, a energia envolvida numa transição eletrónica com as energias dos níveis entre os quais essa transição se dá.
- Comparar espetros de absorção e de emissão de elementos guímicos, concluindo que são característicos de cada elemento.
- Identificar, a partir de informação selecionada, algumas aplicações da espetroscopia atómica (por exemplo, identificação de elementos químicos nas estrelas, determinação de quantidades vestigiais em química forense).
- Associar a nuvem eletrónica a uma representação da densidade da distribuição de eletrões à volta do núcleo atómico, correspondendo as regiões mais densas a maior probabilidade de aí encontrar eletrões.
- Concluir, a partir de valores de energia de remoção eletrónica, obtidas por espetroscopia fotoeletrónica, que átomos de elementos diferentes têm valores diferentes da energia dos eletrões.
- Interpretar valores de energias de remoção eletrónica, obtidos por espetroscopia fotoeletrónica, concluindo que os eletrões se podem distribuir por níveis de energia e subníveis de energia.
- Indicar que os eletrões possuem, além de massa e carga, uma propriedade quantizada denominada spin que permite dois estados diferentes.
- Associar orbital atómica à função que representa a distribuição no espaço de um eletrão no modelo quântico do átomo.
- Identificar as orbitais atómicas s, p e d, com base em representações da densidade eletrónica que lhes está associada e distingui-las quanto ao número e à forma.
- Indicar que cada orbital pode estar associada, no máximo, a dois eletrões, com spin diferente, relacionando esse resultado com o princípio de Pauli.

		Concluir, a partir de valores de energia de remoção eletrónica,
		obtidas por espetroscopia fotoeletrónica, que orbitais de um
		mesmo subnível np, ou nd, têm a mesma energia.
		• Estabelecer as configurações eletrónicas dos átomos, utilizando a
		notação spd, para elementos até Z = 23, atendendo ao Princípio da
		Construção, ao Princípio da Exclusão de Pauli e à maximização do
		número de eletrões desemparelhados em orbitais degeneradas.
1.3 Tabela Periódica	Evolução histórica da Tabela Periódic	ica • Identificar marcos históricos relevantes no estabelecimento da
	• Estrutura da Tabela Periódica: grupo	os, Tabela Periódica atual.
	períodos e blocos	• Interpretar a organização da Tabela Periódica com base em
	Elementos representativos e de	períodos, grupos e blocos e relacionar a configuração eletrónica
	transição	dos átomos dos elementos com a sua posição relativa na Tabela
	• Famílias de metais e de não-metais	Periódica.
	 Propriedades periódicas dos 	• Identificar a energia de ionização e o raio atómico como
	elementos representativos	propriedades periódicas dos elementos.
	- o raio atómico	Distinguir entre propriedades de um elemento e propriedades
	 o energia de ionização 	da(s) substância(s) elementar(es) correspondentes.
	 Propriedades dos elementos e das 	• Comparar raios atómicos e energias de ionização de diferentes
	substâncias elementares	elementos químicos com base nas suas posições relativas na
		Tabela Periódica.
		• Interpretar a tendência geral para o aumento da energia de
		ionização e para a diminuição do raio atómico observados ao longo
		de um período da Tabela Periódica.
		• Interpretar a tendência geral para a diminuição da energia de
		ionização e para o aumento do raio atómico observados ao longo
		de um grupo da Tabela Periódica.
		• Explicar a formação dos iões mais estáveis de metais e de não-
		metais.
		 Justificar a baixa reatividade dos gases nobres.

PROPRIEDADES E TRANSFORMAÇÕES DA MATÉRIA

2.1 Ligação química

- Tipos de ligações químicas
- Ligação covalente
 - estruturas de Lewis
 - energia de ligação e comprimento de ligação
 - polaridade das ligações
 - geometria molecular
 - polaridade das moléculas
 - estruturas de moléculas orgânicas e biológicas
- Ligações intermoleculares
 - ligações de hidrogénio
 - ligações de van der Waals (de London, entre moléculas polares e entre moléculas polares e apolares)
- Miscibilidade

- Indicar que um sistema de dois ou mais átomos pode adquirir maior estabilidade através da formação de ligações químicas.
- Interpretar as interações entre átomos através das forças de atração entre núcleos e eletrões, forças de repulsão entre eletrões e forças de repulsão entre núcleos.
- Interpretar gráficos da energia em função da distância internuclear durante a formação de uma molécula diatómica identificando o predomínio das repulsões a curta distância e o predomínio das atrações a longas distâncias, sendo estas distâncias respetivamente menores e majores do que a distância de equilíbrio.
- estruturas com caráter iónico) e ligações metálicas (partilha de eletrões de valência deslocalizados por todos os átomos).
- Associar as ligações químicas em que não há partilha significativa de eletrões a ligações intermoleculares.
- Interpretar a ocorrência de ligações covalentes simples, duplas ou triplas em H₂, N₂, O₂ e F₂, segundo o modelo de Lewis.
- Representar, com base na regra do octeto, as fórmulas de estrutura de Lewis de moléculas como CH₄, NH₃, H₂O e CO₂.
- Prever a geometria molecular, com base no modelo da repulsão dos pares de eletrões de valência, em moléculas como CH₄, NH₃, H₂O e CO₂.
- Prever a relação entre as energias de ligação ou os comprimentos de ligação em moléculas semelhantes, com base na variação das propriedades periódicas dos elementos envolvidos nas ligações (por exemplo H₂O e H₂S ou HCl e HBr).
- Indicar que as moléculas diatómicas homonucleares são apolares e que as moléculas diatómicas heteronucleares são polares, interpretando essa polaridade com base na distribuição de carga elétrica entre os átomos.
- Identificar ligações polares e apolares com base no tipo de átomos envolvidos na ligação.

|--|

			•	Descrever a atmosfera terrestre como uma solução gasosa, na qual também se encontram coloides e suspensões de matéria particulada. Determinar a composição quantitativa de soluções aquosas e gasosas (como, por exemplo, a atmosfera terrestre), em concentração, concentração em massa, fração molar, percentagem em massa e em volume e partes por milhão, e estabelecer correspondências adequadas.
2.3 Transformações químicas	•	Energia de ligação e reações químicas	•	Interpretar uma reação química como resultado de um processo em que ocorre rutura e formação de ligações químicas. Interpretar a formação de ligações químicas como um processo exoenergético e a rutura como um processo endoenergético. Classificar reações químicas em exotérmicas ou em endotérmicas como aquelas que, num sistema isolado, ocorrem, respetivamente, com aumento ou diminuição de temperatura.
		 radicais livres e estabilidade das espécies químicas ozono estratosférico 	•	Interpretar a energia da reação como o balanço energético entre a energia envolvida na rutura e na formação de ligações químicas, designá-la por variação de entalpia para transformações a pressão constante, e interpretar o seu sinal (positivo ou negativo). Interpretar representações da energia envolvida numa reação química relacionando a energia dos reagentes e dos produtos e a variação de entalpia. Determinar a variação de entalpia de uma reação química a partir das energias de ligação e a energia de ligação a partir da variação
			•	de entalpia e de outras energias de ligação. Identificar transformações químicas desencadeadas pela luz, designando-as por reações fotoquímicas. Distinguir fotodissociação de fotoionização e representar simbolicamente estes fenómenos. Identificar os radicais livres como espécies muito reativas por possuírem eletrões desemparelhados.

ENERGIA E SUA CONSERVAÇÃO

1. Energia e movimentos

- Energia cinética e energia potencial; energia interna
- Sistema mecânico; sistema redutível a uma partícula (centro de massa)
- O trabalho como medida da energia transferida por ação de forças; trabalho realizado por forças constantes
- Teorema da Energia Cinética
- Forças conservativas e não
 conservativas; o peso como força
 conservativa; trabalho realizado pelo
 peso e variação da energia potencial
 gravítica
- Energia mecânica e conservação da energia mecânica
- Forças não conservativas e variação da energia mecânica
- Potência
- Conservação de energia, dissipação de energia e rendimento

- Indicar que um sistema físico (sistema) é o corpo ou o conjunto de corpos em estudo.
- Associar a energia cinética ao movimento de um corpo e a energia potencial (gravítica, elétrica, elástica) a interações desse corpo com outros corpos.
- Aplicar o conceito de energia cinética na resolução de problemas envolvendo corpos que apenas têm movimento de translação.
- Associar a energia interna de um sistema às energias cinética e potencial das suas partículas.
- Identificar um sistema mecânico como aquele em que as variações de energia interna não são tidas em conta.
- Indicar que o estudo de um sistema mecânico que possua apenas movimento de translação pode ser reduzido ao de uma única partícula com a massa do sistema, identificando-a com o centro de massa.
- Identificar trabalho como uma medida da energia transferida entre sistemas por ação de forças e calcular o trabalho realizado por uma força constante em movimentos retilíneos, qualquer que seja a direção dessa força, indicando quando é máximo.
- Enunciar e aplicar o Teorema da Energia Cinética.
- Definir forças conservativas e forças não conservativas, identificando o peso como uma força conservativa.
- Aplicar o conceito de energia potencial gravítica ao sistema em interação corpo-Terra, a partir de um valor para o nível de referência.
- Relacionar o trabalho realizado pelo peso com a variação da energia potencial gravítica e aplicar esta relação na resolução de problemas.
- Definir e aplicar o conceito de energia mecânica.
- Concluir, a partir do Teorema da Energia Cinética, que, se num sistema só atuarem forças conservativas, ou se também atuarem forças não conservativas que não realizem trabalho, a energia

		mecânica do sistema será constante	
		Analisar situações do quotidiano sob o ponto de vista da	
		conservação da energia mecânica, identificando transformações de	
		energia (energia potencial gravítica em energia cinética e vice-	
		versa).	
		Relacionar a variação de energia mecânica com o trabalho	
		realizado pelas forças não conservativas e aplicar esta relação na	
		resolução de problemas.	
		Associar o trabalho das forças de atrito à diminuição de energia	
		mecânica de um corpo e à energia dissipada, a qual se manifesta,	
		por exemplo, no aquecimento das superfícies em contacto.	
2. Energia e fenómenos	 Grandezas elétricas: corrente elétrica, 	, • Interpretar o significado das grandezas corrente elétrica, diferença	
eléctricos	diferença de potencial elétrico e	de potencial elétrico (tensão elétrica) e resistência elétrica.	
	resistência elétrica	Distinguir corrente contínua de corrente alternada.	
	Corrente contínua e corrente	Interpretar a dependência da resistência elétrica de um condutor	
	alternada	filiforme com a resistividade, característica do material que o	
	• Resistência de condutores filiformes;	constitui, e com as suas características geométricas (comprimento	
	resistividade e variação da	e área da secção reta).	
	resistividade com a temperatura	Comparar a resistividade de materiais bons condutores, maus	
	Efeito Joule	condutores e semicondutores e indicar como varia com a	
	Geradores de corrente contínua:	temperatura, justificando, com base nessa dependência, exemplos	
	força eletromotriz e resistência	de aplicação (resistências padrão para calibração, termístor em	
	interna; curva característica	termómetros, etc.).	
	• Associações em série e em paralelo:	Associar o efeito Joule à energia dissipada nos componentes	
	diferença de potencial elétrico e	elétricos, devido à sua resistência, e que é transferida para as	
	corrente elétrica	vizinhanças através de calor, identificando o LED (díodo emissor de	
	Conservação da energia em circuitos	luz) como um componente de elevada eficiência (pequeno efeito	
	elétricos; potência elétrica	Joule).	
		Caracterizar um gerador de tensão contínua pela sua força	
		eletromotriz e resistência interna, interpretando o seu significado,	
		e determinar esses valores a partir da curva característica.	
	l		

		Identifican accessor de componentes elétricos con évic
		Identificar associações de componentes elétricos em série e
		paralelo e caracterizá-las quanto às correntes elétricas que os
		percorrem e à diferença de potencial elétrico nos seus terminais.
		Interpretar a conservação da energia num circuito com gerador de
		tensão e condutores puramente resistivos, através da transferência
		de energia do gerador para os condutores, determinando
		diferenças de potencial elétrico, corrente elétrica, energias
		dissipadas e potência elétrica do gerador e do condutor.
3. Energia, fenómenos	Sistema, fronteira e vizinhança;	Distinguir sistema, fronteira e vizinhança e definir sistema isolado.
térmicos e radiação	sistema isolado; sistema	Identificar um sistema termodinâmico como aquele em que se tem
	termodinâmico	em conta a sua energia interna.
	Temperatura, equilíbrio térmico e	Indicar que a temperatura é uma propriedade que determina se
	escalas de temperatura	um sistema está ou não em equilíbrio térmico com outros e que o
	O calor como medida da energia	aumento de temperatura de um sistema implica, em geral, um
	transferida espontaneamente entre	aumento da energia cinética das suas partículas.
	sistemas a diferentes temperaturas	Indicar que as situações de equilíbrio térmico permitem
	Radiação e irradiância	estabelecer escalas de temperatura, aplicando à escala de
	Mecanismos de transferência de	temperatura Celsius.
	energia por calor em sólidos e fluidos	Relacionar a escala de Celsius com a escala de Kelvin (escala de
	condução e convecção	temperatura termodinâmica) e efetuar conversões de temperatura
	Condução térmica e condutividade	em graus Celsius e kelvin.
	térmica	Identificar calor como a energia transferida espontaneamente
	Capacidade térmica mássica	entre sistemas a diferentes temperaturas.
	 Variação de entalpia de fusão e de 	Distinguir, na transferência de energia por calor, a radiação –
	vaporização	transferência de energia através da propagação de luz, sem haver
	Primeira Lei da Termodinâmica:	contacto entre os sistemas — da condução e da convecção que
	transferências de energia e	exigem contacto entre sistemas.
	conservação da energia	Indicar que todos os corpos emitem radiação e que à temperatura
	 Segunda Lei da Termodinâmica: 	ambiente emitem predominantemente no infravermelho, dando
	degradação da energia e rendimento	
		infravermelhos, visão noturna, termómetros de infravermelhos,
		etc.).

Indian was taken as assumed shearman validade a sure a radicade
Indicar que todos os corpos absorvem radiação e que a radiação
visível é absorvida totalmente pelas superfícies pretas.
Associar a irradiância de um corpo à energia da radiação emitida
por unidade de tempo e por unidade de área.
Identificar uma célula fotovoltaica como um dispositivo que
aproveita a energia da luz solar para criar diretamente uma
diferença de potencial elétrico nos seus terminais, produzindo uma
corrente elétrica contínua.
Dimensionar a área de um sistema fotovoltaico conhecida a
irradiância solar média no local de instalação, o número médio de
horas de luz solar por dia, o rendimento e a potência a debitar
Distinguir os mecanismos de condução e de convecção.
Associar a condutividade térmica à taxa temporal de transferência
de energia como calor por condução, distinguindo materiais bons e
maus condutores do calor.
Interpretar o significado de capacidade térmica mássica, aplicando-
o na explicação de fenómenos do quotidiano.
Interpretar o conceito de variação de entalpias de fusão e de
vaporização.
Interpretar o funcionamento de um coletor solar, a partir de
informação selecionada, e identificar as suas aplicações.
Interpretar e aplicar a Primeira Lei da Termodinâmica.
Associar a Segunda Lei da Termodinâmica ao sentido em que os
processos ocorrem espontaneamente, diminuindo a energia útil.
Efetuar balanços energéticos e calcular rendimentos.
Lieudi, salangos energenos e calcular renamientos.

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO

A classificação a atribuir a cada resposta resulta da aplicação dos critérios gerais e dos critérios específicos apresentados para cada item e é expressa por um número inteiro. A ausência de indicação inequívoca da versão da prova implica a classificação com zero pontos das respostas aos itens de escolha múltipla.

As respostas ilegíveis são classificadas com zero pontos.

Em caso de omissão ou de engano na identificação de uma resposta, esta pode ser classificada se for possível identificar inequivocamente o item a que diz respeito. Se for apresentada mais do que uma resposta ao mesmo item, só é classificada a resposta que surgir em primeiro lugar.

ITENS DE SELEÇÃO

Nos itens de escolha múltipla, a cotação do item só é atribuída às respostas que apresentem de forma inequívoca a opção correta. Todas as outras respostas são classificadas com zero pontos.

Nas respostas aos itens de escolha múltipla, a transcrição do texto da opção escolhida deve ser considerada equivalente à indicação da letra correspondente.

ITENS DE CONSTRUÇÃO

Resposta curta

Nos itens de resposta curta, a cotação do item só é atribuída às respostas totalmente corretas. Poderão ser atribuídas pontuações a respostas parcialmente corretas, de acordo com os critérios específicos.

As respostas que contenham elementos contraditórios são classificadas com zero pontos.

As respostas em que sejam utilizadas abreviaturas, siglas ou símbolos não claramente identificados são classificadas com zero pontos.

Resposta restrita

Nos itens de resposta restrita, os critérios de classificação apresentam-se organizados por níveis de desempenho (itens que envolvam a produção de um texto) ou por etapas (itens que envolvam a realização de cálculos). A cada nível de desempenho e a cada etapa corresponde uma dada pontuação.

Caso as respostas contenham elementos contraditórios, os tópicos ou as etapas que apresentem esses elementos não são considerados para efeito de classificação, ou são pontuadas com zero pontos, respetivamente.

A classificação das respostas aos itens cujos critérios se apresentam organizados por níveis de desempenho resulta da pontuação do nível de desempenho em que as respostas forem enquadradas.

Nas respostas classificadas por níveis de desempenho, se permanecerem dúvidas quanto ao nível a atribuir, deve optar-se pelo nível mais elevado de entre os dois tidos em consideração.

É classificada com zero pontos qualquer resposta que não atinja o nível 1 de desempenho.

As respostas que não apresentem exatamente os termos ou as expressões constantes dos critérios específicos de classificação devem ser classificadas em igualdade de circunstâncias com aquelas que os apresentam, desde que o seu conteúdo seja cientificamente válido, adequado ao solicitado e enquadrado pelos documentos curriculares de referência.

A classificação das respostas aos itens que envolvam a produção de um texto deve ter em conta, além dos tópicos de referência apresentados, a organização dos conteúdos e a utilização de linguagem científica adequada.

Nas respostas que envolvam a produção de um texto, a utilização de abreviaturas, de siglas e de símbolos não claramente identificados ou a apresentação apenas de uma esquematização do raciocínio efetuado constituem fatores de desvalorização, implicando a atribuição da pontuação corresponden te ao nível de desempenho imediatamente abaixo do nível em que a resposta seria enquadrada.

A classificação das respostas aos itens cujos critérios se apresentam organizados por etapas resulta da soma das pontuações atribuídas às etapas apresentadas, à qual podem ser subtraídos pontos em função dos erros cometidos.

Consideram-se dois tipos de erros:

- Erros de tipo 1- erros de cálculo numérico, transcrição incorreta de dados, conversão incorreta de unidades, desde que coerentes com a grandeza calculada, ou apresentação de unidades incorretas no resultado final, também desde que coerentes com a grandeza calculada.
- Erros de tipo 2- erros de cálculo analítico, ausência de conversão de unidades (qualquer que seja o número de conversões não efetuadas, contabiliza-se apenas como um erro de tipo 2), ausência de unidades no resultado final, apresentação de unidades incorretas no resultado final não coerentes com a grandeza calculada e outros erros que não possam ser considerados de tipo 1.

À soma das pontuações atribuídas às etapas apresentadas deve(m) ser subtraído(s):

- 1 ponto, se forem cometidos apenas erros de tipo 1, qualquer que seja o seu número.
- 2 pontos, se for cometido apenas um erro de tipo 2, qualquer que seja o número de erros de tipo 1 cometidos.
- 4 pontos, se forem cometidos mais do que um erro de tipo 2, qualquer que seja o número de erros de tipo1 cometidos.

Os erros cometidos só são contabilizados nas etapas que não sejam pontuadas com zero pontos.

No quadro seguinte, apresentam-se os critérios de classificação a aplicar, em situações específicas, às respostas aos itens de resposta restrita que envolvam a realização de cálculos.

Situação	Classificação
1. Apresentação apenas do resultado final, não incluindo os cálculos	A resposta é classificada com zero pontos.
efetuados nem as justificações e/ou conclusões solicitadas.	
2. Utilização de processos de resolução não previstos nos critérios	É considerado para efeito de classificação qualquer processo de resolução cientificamente correto, desde
específicos de classificação.	que respeite as instruções dadas.
	Os descritores serão adaptados, em cada caso, ao processo de resolução apresentado.
3. Utilização de processos de resolução que não respeitem as	Se a instrução dada se referir apenas a uma etapa de resolução, essa etapa é pontuada com zero pontos.
instruções dadas.	Se a instrução se referir ao processo global de resolução do item, a resposta é classificada com zero pontos.
4. Utilização de expressões ou de equações erradas.	As etapas em que essas expressões ou essas equações forem utilizadas são pontuadas com zero pontos.
5. Utilização de valores numéricos de outras grandezas que não apenas	As etapas em que os valores dessas grandezas forem utilizados são pontuadas com zero pontos.
as referidas na prova (no enunciado dos itens, na tabela de	
constantes e na tabela periódica).	
6. Utilização de valores numéricos diferentes dos dados fornecidos no	
enunciado dos itens.	resultarem de erros de transcrição identificáveis
7. Não explicitação dos cálculos correspondentes a uma ou mais etapas	As etapas nas quais os cálculos não sejam explicitados são pontuadas com zero pontos.
de resolução.	
8. Não explicitação dos valores numéricos a calcular em etapas de	A não explicitação desses valores não implica, por si só, qualquer desvalorização, desde que seja dada
resolução intermédias.	continuidade ao processo de resolução.
9. Ausência de unidades ou apresentação de unidades incorretas nos	Estas situações não implicam, por si só, qualquer desvalorização.
resultados obtidos em etapas de resolução intermédias	
	As etapas em que esses valores forem obtidos ou utilizados são pontuadas com zero pontos.
significado físico.	
11. Resolução com erros (de tipo 1 ou de tipo 2) de uma ou mais etapas	
necessárias à resolução da(s) etapa(s) subsequente(s).	classificação.
12. Existência de uma ou mais etapas, necessárias à resolução da(s	A(s) etapa(s) subsequente(s) é(são) classificada(s) de acordo com os critérios de classificação.
etapa(s) subsequente(s), pontuadas com zero pontos.	
13. Existência de uma ou mais etapas não percorridas na resolução.	A(s) etapa(s) não percorrida(s) e a(s) etapa(s)subsequente(s) que dela(s) dependa(m) são pontuadas com
	zero pontos.
14. Apresentação de cálculos desnecessários que evidenciam a não	A última etapa prevista nos critérios específicos de classificação é pontuada com zero pontos
identificação da grandeza cujo cálculo foi solicitado.	
15. Apresentação de valores calculados com arredondamentos	A apresentação desses valores não implica, por si só, qualquer desvalorização. Constituem exceção situações
incorretos ou com um número incorreto de algarismos	decorrentes da resolução de itens de natureza experimental e situações em que haja uma instrução explícita
significativos.	relativa a arredondamentos ou a algarismos significativo.

MATERIAL AUTORIZADO

- Utilizar apenas caneta ou esferográfica de tinta azul ou preta.
- É interdito o uso de «esferográfica-lápis» e de corretor.
- Máquina de calcular gráfica.